Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Nat Commun ; 15(1): 2484, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509096

RESUMO

Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common. Improving the efficacy of ICB therapy requires better understanding of the mechanism of immune evasion. Here, we identify that the SCC-master transcription factor TP63 suppresses interferon-γ (IFNγ) signaling. TP63 inhibition leads to increased CD8+ T cell infiltration and heighten tumor killing in in vivo syngeneic mouse model and ex vivo co-culture system, respectively. Moreover, expression of TP63 is negatively correlated with CD8+ T cell infiltration and activation in patients with SCC. Silencing of TP63 enhances the anti-tumor efficacy of PD-1 blockade by promoting CD8+ T cell infiltration and functionality. Mechanistically, TP63 and STAT1 mutually suppress each other to regulate the IFNγ signaling by co-occupying and co-regulating their own promoters and enhancers. Together, our findings elucidate a tumor-extrinsic function of TP63 in promoting immune evasion of SCC cells. Over-expression of TP63 may serve as a biomarker predicting the outcome of SCC patients treated with ICB therapy, and targeting TP63/STAT/IFNγ axis may enhance the efficacy of ICB therapy for this deadly cancer.


Assuntos
Carcinoma de Células Escamosas , Interferon gama , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunidade , Interferon gama/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Clin Cancer Res ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437679

RESUMO

PURPOSE: DNA methylation alterations are widespread in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), some of which appear to have evolved independently of somatic mutations in epigenetic regulators. While the presence of somatic mutations in peripheral blood can predict the risk of development of AML and MDS, its accuracy remains unsatisfactory. EXPERIMENTAL DESIGN: We performed global DNA methylation profiling in a case-control study nested within Singapore Chinese Health Study to evaluate if DNA methylation alterations were associated with AML/MDS development. Targeted deep sequencing and methylated DNA immunoprecipitation sequencing (MeDIP-seq) were performed on peripheral blood collected a median of 9.9 years prior to diagnosis of AML or MDS, together with age-matched still healthy individuals as controls. RESULTS: Sixty-six individuals who developed AML or MDS displayed significant DNA methylation changes in the peripheral blood compared with 167 age- and gender-matched controls who did not develop AML/MDS during the follow up period. Alterations in methylation in the differentially methylation regions (DMRs) were associated with increased odds of developing AML/MDS. CONCLUSIONS: The epigenetic changes may be acquired independently and prior to somatic mutations that relevant for AML/MDS development. The association between methylation changes and the risk of pre-AML/MDS in these individuals was considerably stronger than somatic mutations, suggesting that methylation changes could be used as biomarkers for pre- AML/MDS screening.

3.
Adv Sci (Weinh) ; 11(9): e2304939, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115765

RESUMO

Treatment of castration-resistant prostate cancer (CRPC) is a long-standing clinical challenge. Traditionally, CRPC drugs work by either reducing dihydrotestosterone biosynthesis or blocking androgen receptor (AR) signaling. Here it is demonstrated that AR inhibitor treatment gives rise to a drug-tolerant persister (DTP) state. The thioredoxin/peroxiredoxin pathway is up-regulated in DTP cells. Peroxiredoxin 5 (PRDX5) promotes AR inhibitor resistance and CRPC development. Inhibition of PRDX5 suppresses DTP cell proliferation in culture, dampens CRPC development in animal models, and stabilizes PSA progression and metastatic lesions in patients. Therefore, the study provides a novel mechanism and potential target for the management of castration-resistant prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Peroxirredoxinas/metabolismo , Transdução de Sinais
4.
Cell Chem Biol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37924814

RESUMO

Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.

5.
Cancers (Basel) ; 15(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38001638

RESUMO

ARID1A, a member of the chromatin remodeling SWI/SNF complex, is frequently lost in many cancer types, including esophageal adenocarcinoma (EAC). Here, we study the impact of ARID1A deficiency on the anti-tumor immune response in EAC. We find that EAC tumors with ARID1A mutations are associated with enhanced tumor-infiltrating CD8+ T cell levels. ARID1A-deficient EAC cells exhibit heightened IFN response signaling and promote CD8+ T cell recruitment and cytolytic activity. Moreover, we demonstrate that ARID1A regulates fatty acid metabolism genes in EAC, showing that fatty acid metabolism could also regulate CD8+ T cell recruitment and CD8+ T cell cytolytic activity in EAC cells. These results suggest that ARID1A deficiency shapes both tumor immunity and lipid metabolism in EAC, with significant implications for immune checkpoint blockade therapy in EAC.

6.
Blood Adv ; 7(21): 6553-6566, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37611161

RESUMO

The adenosine triphosphate (ATP)-dependent chromatin remodeling complex, SWItch/Sucrose Non-Fermentable (SWI/SNF), has been implicated in normal hematopoiesis. The AT-rich interaction domain 1B (ARID1B) and its paralog, ARID1A, are mutually exclusive, DNA-interacting subunits of the BRG1/BRM-associated factor (BAF) subclass of SWI/SNF complex. Although the role of several SWI/SNF components in hematopoietic differentiation and stem cell maintenance has been reported, the function of ARID1B in hematopoietic development has not been defined. To this end, we generated a mouse model of Arid1b deficiency specifically in the hematopoietic compartment. Unlike the extensive phenotype observed in mice deficient in its paralog, ARID1A, Arid1b knockout (KO) mice exhibited a modest effect on steady-state hematopoiesis. Nonetheless, transplantation experiments showed that the reconstitution of myeloid cells in irradiated recipient mice was dependent on ARID1B. Furthermore, to assess the effect of the complete loss of ARID1 proteins in the BAF complex, we generated mice lacking both ARID1A and ARID1B in the hematopoietic compartment. The double-KO mice succumbed to acute bone marrow failure resulting from complete loss of BAF-mediated chromatin remodeling activity. Our Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed that >80% of loci regulated by ARID1B were distinct from those regulated by ARID1A; and ARID1B controlled expression of genes crucial in myelopoiesis. Overall, loss of ARID1B affected chromatin dynamics in murine hematopoietic stem and progenitor cells, albeit to a lesser extent than cells lacking ARID1A.


Assuntos
Hematopoese , Proteínas Nucleares , Animais , Camundongos , Diferenciação Celular/genética , Cromatina , Hematopoese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
7.
Genome Biol ; 24(1): 193, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620896

RESUMO

BACKGROUND: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging. RESULTS: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types. CONCLUSIONS: These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Humanos , Epigênese Genética , Neoplasias Esofágicas/genética , Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Cromatina
8.
Nat Commun ; 14(1): 1919, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024489

RESUMO

Alternative lengthening of telomeres (ALT) supports telomere maintenance in 10-15% of cancers, thus representing a compelling target for therapy. By performing anti-cancer compound library screen on isogenic cell lines and using extrachromosomal telomeric C-circles, as a bona fide marker of ALT activity, we identify a receptor tyrosine kinase inhibitor ponatinib that deregulates ALT mechanisms, induces telomeric dysfunction, reduced ALT-associated telomere synthesis, and targets, in vivo, ALT-positive cells. Using RNA-sequencing and quantitative phosphoproteomic analyses, combined with C-circle level assessment, we find an ABL1-JNK-JUN signalling circuit to be inhibited by ponatinib and to have a role in suppressing telomeric C-circles. Furthermore, transcriptome and interactome analyses suggest a role of JUN in DNA damage repair. These results are corroborated by synergistic drug interactions between ponatinib and either DNA synthesis or repair inhibitors, such as triciribine. Taken together, we describe here a signalling pathway impacting ALT which can be targeted by a clinically approved drug.


Assuntos
Transdução de Sinais , Telômero , Sobrevivência Celular , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica , Reparo do DNA , Replicação do DNA , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral
9.
J Ovarian Res ; 16(1): 80, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087441

RESUMO

BACKGROUND: Standard platinum-based therapy for ovarian cancer is inefficient against ovarian clear cell carcinoma (OCCC). OCCC is a distinct subtype of epithelial ovarian cancer. OCCC constitutes 25% of ovarian cancers in East Asia (Japan, Korea, China, Singapore) and 6-10% in Europe and North America. The cancer is characterized by frequent inactivation of ARID1A and 10% of cases of endometriosis progression to OCCC. The aim of this study was to identify drugs that are either FDA-approved or in clinical trials for the treatment of OCCC. RESULTS: High throughput screening of 166 compounds that are either FDA-approved, in clinical trials or are in pre-clinical studies identified several cytotoxic compounds against OCCC. ARID1A knockdown cells were more sensitive to inhibitors of either mTOR (PP242), dual mTOR/PI3K (GDC0941), ATR (AZD6738) or MDM2 (RG7388) compared to control cells. Also, compounds targeting BH3 domain (AZD4320) and SRC (AZD0530) displayed preferential cytotoxicity against ARID1A mutant cell lines. In addition, WEE1 inhibitor (AZD1775) showed broad cytotoxicity toward OCCC cell lines, irrespective of ARID1A status. CONCLUSIONS: In a selection of 166 compounds we showed that inhibitors of ATR and WEE1 were cytotoxic against a panel of OCCC cell lines. These two drugs are already in other clinical trials, making them ideal candidates for treatment of OCCC.


Assuntos
Adenocarcinoma de Células Claras , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias Ovarianas , Proteínas Tirosina Quinases , Feminino , Humanos , Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/patologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Epitelial do Ovário , Proteínas de Ciclo Celular/metabolismo , China , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
10.
Autophagy ; 19(9): 2618-2619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36747349

RESUMO

Drug-tolerant persister (DTP) cancer cells drive residual tumor and relapse. However, the mechanisms underlying DTP state development are largely unexplored. In a recent study, we determined that PINK1-mediated mitophagy favors DTP generation in the context of MAPK inhibition therapy. DTP cells that persist in the presence of a MAPK inhibitor exhibit mitochondriadependent metabolism. During DTP state development, MYC depletion alleviates the transcriptional repression of PINK1, resulting in PINK1 upregulation and mitophagy activation. PINK1-mediated mitophagy is essential for mitochondrial homeostasis in DTP cells. Either knockdown of PINK1 or inhibition of mitophagy eradicates DTP cells and achieves complete responses to MAPK inhibition therapy. This study reveals a novel role of mitophagy as a protective mechanism for DTP development.


Assuntos
Mitofagia , Neoplasias , Autofagia , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/metabolismo
11.
Cancer Res ; 83(6): 922-938, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638333

RESUMO

Despite the remarkable clinical responses achieved with immune checkpoint blockade therapy, the response rate is relatively low and only a subset of patients can benefit from the treatment. Aberrant RNA accumulation can mediate IFN signaling and stimulate an immune response, suggesting that targeting RNA decay machinery might sensitize tumor cells to immunotherapy. With this in mind, we identified an RNA exoribonuclease, XRN1, as a potential therapeutic target to suppress RNA decay and stimulate antitumor immunity. Silencing of XRN1 suppressed tumor growth in syngeneic immunocompetent mice and potentiated immunotherapy efficacy, while silencing of XRN1 alone did not affect tumor growth in immunodeficient mice. Mechanistically, XRN1 depletion activated IFN signaling and the viral defense pathway; both pathways play determinant roles in regulating immune evasion. Aberrant RNA-sensing signaling proteins (RIG-I/MAVS) mediated the expression of IFN genes, as depletion of each of them blunted the elevation of antiviral/IFN signaling in XRN1-silenced cells. Analysis of pan-cancer CRISPR-screening data indicated that IFN signaling triggered by XRN1 silencing is a common phenomenon, suggesting that the effect of XRN1 silencing may be extended to multiple types of cancers. Overall, XRN1 depletion triggers aberrant RNA-mediated IFN signaling, highlighting the importance of the aberrant RNA-sensing pathway in regulating immune responses. These findings provide the molecular rationale for developing XRN1 inhibitors and exploring their potential clinical application in combination with cancer immunotherapy. SIGNIFICANCE: Targeting XRN1 activates an intracellular innate immune response mediated by RNA-sensing signaling and potentiates cancer immunotherapy efficacy, suggesting inhibition of RNA decay machinery as a novel strategy for cancer treatment.


Assuntos
Neoplasias , RNA , Animais , Camundongos , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Estabilidade de RNA , Transdução de Sinais
12.
Cancer Res ; 83(3): 398-413, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480196

RESUMO

The drug-tolerant persister (DTP) state enables cancer cells to evade cytotoxic stress from anticancer therapy. However, the mechanisms governing DTP generation remain poorly understood. Here, we observed that lung adenocarcinoma (LUAD) cells and organoids entered a quiescent DTP state to survive MAPK inhibitor treatment. DTP cells following MAPK inhibition underwent a metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS). PTEN-induced kinase 1 (PINK1), a serine/threonine kinase that initiates mitophagy, was upregulated to maintain mitochondrial homeostasis during DTP generation. PINK1-mediated mitophagy supported DTP cell survival and contributed to poor prognosis. Mechanistically, MAPK pathway inhibition resulted in MYC-dependent transcriptional upregulation of PINK1, leading to mitophagy activation. Mitophagy inhibition using either clinically applicable chloroquine or depletion of PINK1 eradicated drug tolerance and allowed complete response to MAPK inhibitors. This study uncovers PINK1-mediated mitophagy as a novel tumor protective mechanism for DTP generation, providing a therapeutic opportunity to eradicate DTP and achieve complete responses. SIGNIFICANCE: DTP cancer cells that cause relapse after anticancer therapy critically depend on PINK1-mediated mitophagy and metabolic reprogramming, providing a therapeutic opportunity to eradicate persister cells to prolong treatment efficacy.


Assuntos
Mitofagia , Fosforilação Oxidativa , Humanos , Proteínas Quinases/metabolismo , Recidiva Local de Neoplasia , Homeostase , Oxirredução , Ubiquitina-Proteína Ligases/metabolismo
13.
Pharmacol Res ; 185: 106462, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167276

RESUMO

Liposarcoma, the most common soft tissue sarcoma, is a group of fat cell mesenchymal tumors with different histological subtypes. The dysregulation of long non-coding RNAs (lncRNAs) has been observed in human cancers including a few studies in sarcoma. However, the global transcriptome analysis and potential role of lncRNAs remain unexplored in liposarcoma. The present investigation uncovers the transcriptomic profile of liposarcoma by RNA sequencing to gain insight into the global transcriptional changes in liposarcoma. Our RNA sequencing analysis has identified that many oncogenic lncRNAs are differentially expressed in different subtypes of liposarcoma including MALAT1, PVT1, SNHG15, LINC00152, and MIR210HG. Importantly, we identified a highly overexpressed, unannotated, and novel lncRNA in dedifferentiated liposarcomas. We have named it TODL, transcript overexpressed in dedifferentiated liposarcoma. TODL lncRNA displayed significantly higher expression in dedifferentiated liposarcoma cell lines and patient samples. Interestingly, functional studies revealed that TODL lncRNA has an oncogenic function in liposarcoma cells by regulating proliferation, cell cycle, apoptosis, differentiation, and tumorigenesis in the murine model. Silencing of TODL lncRNA highlighted the enrichment of several key oncogenic signaling pathways including cell cycle, transcriptional misregulation, FOXM1 network, p53 signaling, PLK1 signaling, FoxO, and signaling Aurora signaling pathways. RNA pull-down assay revealed the binding of TODL lncRNA with FOXM1, an oncogenic transcription factor, and the key regulator of the cell cycle. Silencing of TODL lncRNA also induces adipogenesis in dedifferentiated liposarcomas. Altogether, our finding indicates that TODL could be utilized as a novel, specific diagnostic biomarker, and a pharmacological target for therapeutic development in controlling aggressive and metastatic dedifferentiated liposarcomas.


Assuntos
Proteína Forkhead Box M1 , Lipossarcoma , RNA Longo não Codificante , Animais , Humanos , Camundongos , Carcinogênese/genética , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Perfilação da Expressão Gênica , Lipossarcoma/genética , Lipossarcoma/metabolismo , Lipossarcoma/patologia , RNA Longo não Codificante/genética , Transcriptoma
14.
Cell Mol Life Sci ; 79(7): 362, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699794

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is correlated with poor outcomes because of limited therapeutic options. Laminin-5 gamma-2 (LAMC2) plays a critical role in key biological processes. However, the detailed molecular mechanism and potential roles of LAMC2 in PDAC stay unexplored. The present study examines the essential role and molecular mechanisms of LAMC2 in the tumorigenesis of PDAC. Here, we identified that LAMC2 is significantly upregulated in microarray cohorts and TCGA RNA sequencing data of PDAC patients compared to non-cancerous/normal tissues. Patients with higher transcript levels of LAMC2 were correlated with clinical stages; dismal overall, as well as, disease-free survival. Additionally, we confirmed significant upregulation of LAMC2 in a panel of PDAC cell lines and PDAC tumor specimens in contrast to normal pancreatic tissues and cells. Inhibition of LAMC2 significantly decreased cell growth, clonogenic ability, migration and invasion of PDAC cells, and tumor growth in the PDAC xenograft model. Mechanistically, silencing of LAMC2 suppressed expression of ZEB1, SNAIL, N-cadherin (CDH2), vimentin (VIM), and induced E-cadherin (CDH1) expression leading to a reversal of mesenchymal to an epithelial phenotype. Interestingly, co-immunoprecipitation experiments demonstrated LAMC2 interaction with epidermal growth factor receptor (EGFR). Further, stable knockdown of LAMC2 inhibited phosphorylation of EGFR, ERK1/2, AKT, mTOR, and P70S6 kinase signaling cascade in PDAC cells. Altogether, our findings suggest that silencing of LAMC2 inhibited PDAC tumorigenesis and metastasis through repression of epithelial-mesenchymal transition and modulation of EGFR/ERK1/2/AKT/mTOR axis and could be a potential diagnostic, prognostic, and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Laminina , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Laminina/biossíntese , Laminina/genética , Laminina/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
J Clin Immunol ; 42(7): 1434-1450, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35726044

RESUMO

PURPOSE: Specific granule deficiency (SGD) is a rare inborn error of immunity resulting from loss-of-function variants in CEBPE gene (encoding for transcription factor C/EBPε). Although this genetic etiology has been known for over two decades, only a few patients with CEBPE variant-proven SGD (type I) have been reported. Herein, we describe two siblings with a novel homozygous CEBPE deletion who were noted to have profound neutropenia on initial evaluation. We aimed to evaluate the immunohematological consequences of this novel variant, including profound neutropenia. METHODS: Light scatter characteristics of granulocytes were examined on various automated hematology analyzers. Phagocyte immunophenotype, reactive oxygen species generation, and Toll-like receptor (TLR) signaling were assessed using flow cytometry. Relative expression of genes encoding various granule proteins was studied using RT-PCR. Western blot analysis and luciferase reporter assay were performed to explore variant C/EBPε expression and function. RESULTS: Severe infections occurred in both siblings. Analysis of granulocyte light scatter plots revealed automated hematology analyzers can provide anomalously low neutrophil counts due to abnormal neutrophil morphology. Neutrophils displayed absence/marked reduction of CD15/CD16 expression and overexpression (in a subset) of CD14/CD64. Three distinct populations of phagocytes with different oxidase activities were observed. Impaired shedding of CD62-ligand was noted on stimulation with TLR-4, TLR-2/6, and TLR-7/8 agonists. We demonstrated the variant C/EBPε to be functionally deficient. CONCLUSION: Homozygous c.655_665del variant in CEBPE causes SGD. Anomalous automated neutrophil counts may be reported in patients with SGD type I. Aberrant TLR signaling might be an additional pathogenetic mechanism underlying immunodeficiency in SGD type I.


Assuntos
Transtornos Leucocíticos , Neutropenia , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transtornos Leucocíticos/genética , Neutropenia/diagnóstico , Neutropenia/genética , Neutropenia/complicações , Neutrófilos
16.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163134

RESUMO

Multiple myeloma (MM) is a hematological disease marked by abnormal growth of B cells in bone marrow. Inherent chromosomal instability and DNA damage are major hallmarks of MM, which implicates an aberrant DNA repair mechanism. Studies have implicated a role for CDK12 in the control of expression of DNA damage response genes. In this study, we examined the effect of a small molecule inhibitor of CDK12-THZ531 on MM cells. Treatment of MM cells with THZ531 led to heightened cell death accompanied by an extensive effect on gene expression changes. In particular, we observed downregulation of genes involved in DNA repair pathways. With this insight, we extended our study to identify synthetic lethal mechanisms that could be exploited for the treatment of MM cells. Combination of THZ531 with either DNA-PK inhibitor (KU-0060648) or PARP inhibitor (Olaparib) led to synergistic cell death. In addition, combination treatment of THZ531 with Olaparib significantly reduced tumor burden in animal models. Our findings suggest that using a CDK12 inhibitor in combination with other DNA repair inhibitors may establish an effective therapeutic regimen to benefit myeloma patients.


Assuntos
Anilidas/farmacologia , Biomarcadores Tumorais/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirimidinas/farmacologia , Mutações Sintéticas Letais , Animais , Apoptose , Proteína BRCA1/genética , Proteína BRCA2/genética , Proliferação de Células , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncogene ; 41(15): 2210-2224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35220407

RESUMO

The small arginine-rich protein protamine condenses complete genomic DNA into the sperm head. Here, we applied its high RNA binding capacity for spontaneous electrostatic assembly of therapeutic nanoparticles decorated with tumour-cell-specific antibodies for efficiently targeting siRNA. Fluorescence microscopy and DLS measurements of these nanocarriers revealed the formation of a vesicular architecture that requires presence of antibody-protamine, defined excess of free SMCC-protamine, and anionic siRNA to form. Only these complex nanoparticles were efficient in the treatment of non-small-cell lung cancer (NSCLC) xenograft models, when the oncogene KRAS was targeted via EGFR-mediated delivery. To show general applicability, we used the modular platform for IGF1R-positive Ewing sarcomas. Anti-IGR1R-antibodies were integrated into an antibody-protamine nanoparticle with an siRNA specifically against the oncogenic translocation product EWS/FLI1. Using these nanoparticles, EWS/FLI1 knockdown blocked in vitro and in vivo growth of Ewing sarcoma cells. We conclude that these antibody-protamine-siRNA nanocarriers provide a novel platform technology to specifically target different cell types and yet undruggable targets in cancer therapy by RNAi.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Proteínas de Fusão Oncogênica/genética , Protaminas/genética , Protaminas/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , RNA Interferente Pequeno/genética , Proteína EWS de Ligação a RNA/genética , Tecnologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Res ; 20(4): 637-649, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022315

RESUMO

KDM6A, an X chromosome-linked histone lysine demethylase, was reported to be frequently mutated in many tumor types including breast and bladder cancer. However, the functional role of KDM6A is not fully understood. Using MCF10A as a model of non-tumorigenic epithelial breast cells, we found that silencing KDM6A promoted cell migration and transformation demonstrated by the formation of tumor-like acini in three-dimensional culture. KDM6A loss reduced the sensitivity of MCF10A cells to therapeutic agents commonly used to treat patients with triple-negative breast cancer and also induced TGFß extracellular secretion leading to suppressed expression of cytotoxic genes in normal human CD8+ T cells in vitro. Interestingly, when cells were treated with TGFß, de novo synthesis of KDM6A protein was suppressed while TGFB1 transcription was enhanced, indicating a TGFß/KDM6A-negative regulatory axis. Furthermore, both KDM6A deficiency and TGFß treatment promoted disorganized acinar structures in three-dimensional culture, as well as transcriptional profiles associated with epithelial-to-mesenchymal transition and metastasis, suggesting KDM6A depletion and TGFß drive tumor progression. IMPLICATIONS: Our study provides the preclinical rationale for evaluating KDM6A and TGFß in breast tumor samples as predictors for response to chemo and immunotherapy, informing personalized therapy based on these findings.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Bexiga Urinária , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Células Epiteliais/patologia , Feminino , Histona Desmetilases/genética , Humanos , Fator de Crescimento Transformador beta , Neoplasias da Bexiga Urinária/genética
19.
Haematologica ; 107(3): 680-689, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691379

RESUMO

Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. In order to further investigate the role of this splice factor in RNA splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in both competitive and non-competitive reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not in human cells contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to accurately model ZRSR2-mutant MDS in mice.


Assuntos
Síndromes Mielodisplásicas , Splicing de RNA , Ribonucleoproteínas , Fator de Processamento U2AF , Animais , Íntrons , Camundongos , Mutação , Síndromes Mielodisplásicas/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Spliceossomos/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
20.
Cancer Discov ; 12(2): 522-541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34615655

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation. SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Células Dendríticas/metabolismo , Transtornos Mieloproliferativos/genética , Ribonucleoproteínas/genética , Apoptose , Feminino , Identidade de Gênero , Humanos , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...